Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.

نویسندگان

  • A I Schlagowski
  • F Singh
  • A L Charles
  • T Gali Ramamoorthy
  • F Favret
  • F Piquard
  • B Geny
  • J Zoll
چکیده

The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg(-1)·day(-1) in drinking water, n = 8). The DNP group had a significantly lower body mass (P < 0.05) and a higher resting oxygen uptake (Vo2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy (P < 0.01) were impaired but that maximal Vo2 (Vo2max) was higher in the DNP-treated rats (P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher (P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower (P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and -2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 (P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group (P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated Mitochondrial Oxidative Stress Impairs Metabolic Adaptations to Exercise in Skeletal Muscle

Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress presen...

متن کامل

The Training Stimulus and Response

1. Endurance exercise induces a variety of metabolic and morphological responses/adaptations in skeletal muscle that function to minimize cellular disturbances during subsequent training sessions. 2. Chronic adaptations in skeletal muscle are likely to be the result of the cumulative effect of repeated bouts of exercise, with the initial signalling responses leading to such adaptations occurrin...

متن کامل

Exercise preconditioning: review

It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity,...

متن کامل

Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is requi...

متن کامل

Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation

OBJECTIVE Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyltransferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory action on peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). However, the specific contributio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 116 4  شماره 

صفحات  -

تاریخ انتشار 2014